SpaceX Launches another resupply - with a Jax twist

Started by spuwho, January 05, 2015, 10:29:15 PM

spuwho

SpaceX will be launching a resupply spaceship to the ISS at 6:20AM tomorrow. A Jacksonville connection? Yes.

SpaceX will try to land the booster on a barge 200 miles east of town. The special barge left Jacksonville today. If it is successful, the barge will bring the booster back to Jacksonville for transport. If SpaceX is successful, this could make Jacksonville their full time recovery center.

Per CBS News:

SpaceX set for space station flight, booster landing attempt


A SpaceX "autonomous spaceport drone" -- a modified barge with a 300-foot-long 170-foot-wide deck -- is seen during tests in Jacksonville. SpaceX engineers hope to land the first stage of a Falcon 9 rocket on the barge during launch Tuesday


SpaceX engineers made final preparations Monday for the planned Tuesday launch of a Falcon 9 rocket carrying a Dragon cargo ship loaded with more than 5,200 pounds of supplies, equipment and science gear bound for the International Space Station. The company also will attempt to land the booster's first stage on an off-shore barge, a key element in founder Elon Musk's long-range plans to lower costs by recovering, refurbishing and re-flying rocket hardware.

"We are extremely interested in the success of this flight in terms of getting cargo to the ISS," station Program Manager Mike Suffredini said. "But as an agency, we're also extremely proud of our affiliation with SpaceX and very excited about the steps they take to further spaceflight in general and reduce the cost."

Hans Koenigsmann, vice president of mission assurance for SpaceX, stressed that while the landing test was an important goal for the company's long-range plans, "the main mission is absolutely to get cargo to the station and to make sure the station's supply (chain) is steady and stable and reliable."

Running three weeks late because of now-resolved problems encountered during an engine test firing last month, the 208-foot-tall Falcon 9 was scheduled for liftoff from complex 40 at the Cape Canaveral Air Force Station at 6:20:29 a.m. EST (GMT-5) Tuesday, roughly the moment Earth's rotation moves the booster into the plane of the space station's orbit. Forecasters predicted a 70 percent chance of acceptable weather.

It will be the company's fifth operational resupply mission under a $1.6 billion contract with NASA calling for 12 flights. It will be the first U.S. station supply flight since an Orbital Sciences Antares booster exploded seconds after liftoff Oct. 28, destroying a Cygnus cargo ship making the company's third flight under a separate $1.9 billion contract.

Orbital's Antares rocket is now grounded pending a switch to different engines, leaving SpaceX as NASA's only provider of U.S.-based resupply services. The Russians also launch supplies using unmanned Progress cargo ships and larger Japanese HTV supply ships fly once every year or so. Three Progress launches are planned between now and early August, along with an HTV launch on Aug. 17.

But with Orbital out of action in the near term, the SpaceX flights are critical for sustaining the station's six-person crews. Suffredini said a SpaceX failure, depending on its severity and the steps needed to recover, could force NASA to reduce the station's crew from six to three or, in a worst-case scenario, to briefly abandon the laboratory.

Before the loss of the Orbital Sciences cargo ship, NASA and its partners were trying to keep about six months of supplies on board the station at all times. Given the failure, that margin is expected to be reduced to four or five months.

"So if something happened to SpaceX, we'd have to figure out where we were and how quickly they could return to flight and we would react accordingly," Suffredini said. "The crew has enough supplies, including research, to continue to work for somewhere between four and six months. So the decision we'd have to make is, how quickly can SpaceX get back up? And then what can we do with our Russian colleagues with regard to any support they might supply?

"Then we'd have to look together about what are the right steps to take, do we go ahead and let everybody go home until we're ready to resupply again, or do we step down to three crew? And I suspect that's what we'd do if we had to, we'd step down to three crew first."

But given the supplies that are constantly stockpiled on board, mission planners would have "quite a bit of time" to work through launch problems if they occur.
"In all cases, we have plenty of time to decide what to do next, figure out what we're really dealing with and then figure out how we want to react to it," he said.

While station resupply is the primary goal of the SpaceX mission, the company hopes to achieve another milestone with an attempt to land the first stage on a remotely operated barge stationed some 200 miles east of Jacksonville. If it works, the company's long-range goal of routinely recovering and re-flying booster stages, dramatically lowering the cost of access to space, will move a step closer to reality.

"Reusability is the critical breakthrough needed in rocketry to take things to the next level," Musk said during the MIT AeroAstro Centennial Symposium in October. "We've been able to soft land the rocket booster in the ocean twice so far.

"So what we need to do is be able to either land on a floating platform or ideally boost back to the launch site and land back at the launch site. But before we boost back to the launch site and try to land there, we need to show that we can land with precision over and over again, otherwise something bad could happen."

He gave the initial landing attempt a 50 percent chance of success.

"If we land on (the barge), I think we'll be able to refly that booster," Musk said. "But it's probably, maybe not more than a 50 percent chance, or less, of landing it on the platform for the first time. But there are ... at least a dozen launches that will occur over the next year, and I think it's quite likely, probably 80-to-90 percent likely, that one of those flights will be able to land and refly. So I think we're quite close."

Joan Johnson-Freese, professor of national security affairs at the U.S. Naval War College, said "being able to do a soft-landing recovery of rocket boosters saves launch companies time -- and time is money."

"If commercial spaceflight is ever going to be anything like a 'normal' industry, fast turnaround and (relatively) low costs are imperative," she told CBS News in an email exchange last month. "Airplanes land ready to use again -- not requiring months of hanger time between flights. The analogy with recoverable rocket boosters isn't perfect, but it's close."

The Falcon 9 will launch into the plane of the station's orbit on a northeasterly trajectory. The first stage's nine SpaceX Merlin 1D engines will fire for about two minutes and 37 seconds to boost the Dragon capsule and Falcon 9 second stage out of the dense lower atmosphere to an altitude of around 50 miles and a velocity of 10 times the speed of sound.

Four seconds after engine shutdown, the first stage will fall away and and eight seconds later, the second stage's single Merlin 1D engine will ignite to continue the push toward orbit. If all goes well, the Dragon capsule will be released to fly on its own about 10 minutes after launch.

The first stage, meanwhile, will attempt a powered descent to the remotely operated ship some 200 miles east of Jacksonville, extending four landing legs a few moments before touchdown just before the Dragon capsule is released into orbit. The barge, modified for use as a landing platform, features a deck measuring 300 feet long and 170 feet wide and thrusters to maintain its position to within a few feet. SpaceX calls it an "autonomous spaceport drone ship."

"Returning anything from space is a challenge, but returning a Falcon 9 first stage for a precision landing presents a number of additional hurdles," SpaceX said in a blog post last month. "At 14 stories tall and traveling upwards of 1300 m/s (meters per second, or 2,900 mph), stabilizing the Falcon 9 first stage for re-entry is like trying to balance a rubber broomstick on your hand in the middle of a wind storm.

"To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn -- the boostback burn -- adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle's speed from 1300 m/s to about 250 m/s (560 mph). The final burn is the landing burn, during which the legs deploy and the vehicle's speed is further reduced to around 2 m/s (4.5 mph)."

The Falcon 9 first stage features four deployable fins mounted around the upper end of the booster. The fins can be repositioned in flight to help control the rocket's lift and orientation. The use of the fins, along with steering by the first stage engines, "will allow for precision landing -- first on the autonomous spaceport drone ship, and eventually on land," the company said in its blog post.

Assuming a successful touchdown, Koenigsmann said SpaceX engineers standing by on a nearby support ship will wait one to two hours while residual liquid oxygen boils away and vents overboard. Then they will move in to lock the landing legs to the drone ship's deck and secure the booster for the long haul back to Jacksonville.

But the landing attempt, while important to SpaceX, is a strictly secondary objective. The primary goal of the flight is to deliver cargo to the space Station. The Dragon capsule is loaded with more than 4,000 pounds of cargo in the ship's pressurized hold, along with a 1,000-pound atmospheric research instrument mounted in an unpressurized trunk section accessible by the lab's robot arm.

The Cloud Aerosol Transport System, or CATS, instrument will be extracted from the trunk later and mounted on a platform attached to the Japanese Kibo lab module.

"CATS is a spectacular opportunity to utilize the International Space Station to achieve important Earth-science measurements at a modest cost," said Matthew McGill, the principal investigator. "The goal of CATS is to measure and characterize the global distribution of clouds and tiny airborne particles, or aerosols, in the Earth's atmosphere."

About the size of a refrigerator, CATS features a compact telescope, a pair of lasers and sensitive detectors. Together, they make up a sophisticated LIDAR system that works "by sending discrete pulses of laser light into the Earth's atmosphere and detecting the tiny, tiny fraction of that light that scatters straight back toward our collecting telescope," McGill said.

Studying clouds and aerosols from low-Earth orbit will allow researchers to monitor the effects of transient events like volcanic eruptions in near realtime, to monitor the effects of natural and human-generated pollutants and to study the factors contributing to climate change.

"Clouds are one of the largest uncertainties right now in predicting climate change because clouds are the key determiner of the planet's average temperature," McGill said. "But in create more accurate climate models, we need more accurate representations of clouds to put in the models. That is information CATS can provide."

Cargo packed into the Dragon capsule's pressurized compartment includes food, clothing and personal items for the station's six-member crew, research equipment and spare parts along with high-priority items intended to replace cargo lost in the Antares launch failure in October, including a variety of student experiments.

Among the science gear is a fruit fly lab for studies of the immune system, a flatworm regeneration experiment to learn more about how the organisms regenerate and replace damaged cells and an investigation to learn how proteins clump together in fibrous plaques like the amyloids that play a role in Alzheimer's disease.

If all goes as planned, the Dragon cargo ship will fly a complex rendezvous to catch up with the station Thursday around 6:25 a.m., pulling up to within about 30 feet and then standing by while Expedition 42 commander Barry "Butch" Wilmore, operating the lab's robot arm, locks onto a grapple fixture.

Ground controllers then will take over, remotely operating the arm to move the Dragon capsule into position for berthing at the Earth-facing port of the forward Harmony module. Wilmore, assisted by European Space Agency astronaut Samantha Cristoforetti, will operate the common berthing mechanism, driving home motorized bolts to lock the spacecraft in place.

The Dragon is expected to remain attached to the station for about a month. As the astronauts unload the capsule, they will repack it with some 3,600 pounds of no-long-needed equipment, trash and experiment samples. Wilmore and company will use the station's robot arm to detach the capsule, releasing it for a fiery nighttime descent to Earth. Splashdown in the Pacific Ocean southwest of Sand Diego is expected around 8:30 p.m. on Feb. 7.

spuwho

Per the JBJ:

SpaceX launch rescheduled for Friday

Due to an error late in the countdown process, the SpaceX launch is setting its sights on Friday.

The launch of SpaceX's Falcon Nine, which was scheduled for a Tuesday morning launch, seeks to lift a cargo ship into space and then test if it can land itself instead of splashing into corrosive salt water.

The launch – and, hopefully, the landing – is set to take place on an automated barge just 200 miles off Jacksonville's coastline.

The experiment, if successful, could mean massive savings in the long run for space vessels, which suffer damage in the splashing down process.

The odds of success are far from certain – SpaceX says it's about a 50-50 shot.

If all goes well, the launch will take place at 5:09 a.m. on Friday.

spuwho

#2
The mission launched successfully this morning. The recovery crew east of Jacksonville reported the following on the first stage recovery.

SpaceX SpaceX
3 minutes ago ·22,642 Views
Landing Update
Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future though.


On Twitter from Elon Musk:

"Ship itself is fine. Some of the support equipment will need to be replaced,"

"Didn't get good landing/impact video. Pitch dark and foggy. Will piece it together from telemetry and...actual pieces."


spuwho

This is what the rocket recovery barge looked like.  No people on it, they sat in another ship a few miles away.



It's not official, but it is believed the first stage final re-entry burn out of the three total did not ignite and therefore crashed on top of the barge, broke up and damaged it.  If anyone out at Mayport is around when they tug it back in for repairs will probably see the damage it did. 

When Musk said they were checking telemetry and the "actual pieces" should give a good indication of how hard it came down.

spuwho

Here are the pictures of the SpaceX Landing Drone Barge coming back into JaxPort. You can see where the rocket crashed into the far end of the barge and damaged some of the equipment. What's left of the booster is under the tarps.









Per Spaceflightnow.com

SpaceX's rocket landing platform back in port

SpaceX's ocean-going rocket landing pad — dubbed the autonomous spaceport drone ship — is back in port after a Falcon 9 rocket booster crashed on the platform during an experimental flyback maneuver following Saturday's successful liftoff with supplies for the International Space Station.

Under tow from a tugboat, the 300-foot-long Marmac 300 cargo barge arrived at the Port of Jacksonville in Florida on Sunday afternoon. The images below show it in the St. Johns River near Dames Point Bridge.

The first stage of SpaceX's Falcon 9 rocket completed a series of maneuvers to fly back to the barge from the edge of space after sending a Dragon supply ship on its way to the International Space Station. The mission lifted off from Cape Canaveral at 4:47 a.m. EST (0947 GMT) Saturday, with landing on the barge targeted less than 10 minutes later.

SpaceX founder and CEO Elon Musk tweeted the first stage booster reached the platform but landed hard, adding later that hydraulic fluid powering the rocket's four aerodynamic stabilization fins apparently ran out on final descent.

Engineers plan to add more hydraulic fluid to the rocket for an upcoming launch, which will try to perform the recovery experiment again. If SpaceX succeeds, engineers will inspect the rocket to see what work is required to refurbish for another flight. The ultimate goal is to make the Falcon 9 rocket reusable, an achievement SpaceX says would reduce the cost of space launches.

Photos of the barge show signs of blast and burn damage to cargo containers and possible wreckage from the rocket covered by tarps on the platform's deck. The rest of the vessel appeared undamaged.

Jason

Gotta give them some kudos for trying something never attempted.  Hopefully they will be able to get the kinks worked out.

spuwho

Want to see what happened to the Falcon 9 booster that tried to land off the coast of Jacksonville?  Elon Musk of SpaceX has released a photo and video of the booster trying to land on the drone barge without success. Why did it fail?  Per SpaceX, the stabilizer fins at the top of the booster that help keep the ship upright lost hydraulics a minute before touchdown.
Per Business Insider:

SpaceX Just Dropped This Incredible Vine Of Their Rocket's Explosive Near-Landing


The rocket exploded upon crash landing.

SpaceX launched and landed a rocket on Saturday, but the event did not go as well as planned.

SpaceX CEO Elon Musk tweeted Saturday that the rocket landed too hard, but it was not clear exactly what happened, until now. This is an amazing vine that SpaceX just released of the attempted rocket landing, which leaves little to the imagination.

https://www.youtube.com/v/YyZIuFXCswo


It's incredible to see the rocket fly in at a 45-degree angle and then explode upon impact. What's equally incredible is that the rocket actually made contact with the barge in the first place, steering itself from 50 miles above Earth's surface.

Although the rocket was blown to bits, the drone ship suffered minor damage, shown below to be mostly intact with minimal burn marks. SpaceX will try this stunt again using the same drone ship for their next launch scheduled for January 29.

acme54321

FYI - The barge is at the far west end of the cruise terminal docks.  It's easily visible from Heckscher, not too much to see.  I drove by yesterday and happened to see it there.  It had a noticeable list but not sure if that had to do with the crash.

spuwho

SpaceX has released a demo on how rocket return is going to work with the newer booster, the Falcon Heavy.

With one barge to work with off the coast of Jacksonville, I will be curious how they plan to test the return of three boosters as opposed to just one before they steer them back to Canaveral.

https://www.youtube.com/v/4Ca6x4QbpoM

spuwho

The SpaceX barge has left Jax for yet another booster re-entry test on Sunday evening right after sunset at 6:15PM. Barring clear skies you should be able to see the primary booster flame in the dusk before it crosses the terminator back into the sunlight at high altitude.

This will be the second attempt to recover the booster on the barge 200 miles east.  SpaceX has increased hydraulic capacity in the steering rudder system, whereas in the first attempt the system lost hydraulics and resulted in the near miss crash.

The big question is how they are bringing the booster back to shore and unloading it.

SpaceX says if successful they will tie it down as part of the recovery process.....but I want to know if the 15 story tall booster is coming back through Dames Point (with a glorious passage under the DP bridge) or is it going down the Intercoastal back to the Cape for processing?


spuwho


spuwho

Rocket launched as planned tonight, but the booster return to the barge off the coast was scrubbed.

We could see the launch from University Boulevard to just before 1st stage cutoff.

spuwho

Quote from: spuwho on February 11, 2015, 06:19:05 PM
Rocket launched as planned tonight, but the booster return to the barge off the coast was scrubbed.

We could see the launch from University Boulevard to just before 1st stage cutoff.

The landing on the barge was scrubbed due to 10 meter swells in the Atlantic east of Jax.  The first stage did go through its re-entry maneuvers and splashed down.

https://www.youtube.com/v/OvHJSIKP0Hg

spuwho

SpaceX will be attempting another booster recovery on their barge today.

Per Space.com:

SpaceX aims to launch its robotic Dragon cargo capsule toward the International Space Station from Florida's Cape Canaveral Air Force Station today (April 13) at 4:33 p.m. EDT (2033 GMT), then bring the first stage of its Falcon 9 rocket back for a vertical touchdown on an unmanned ship in the Atlantic Ocean. You can watch the launch live at Space.com courtesy of NASA TV, beginning at 3:30 p.m. EDT (1930 GMT).

As of Sunday (April 12), Air Force forecasters were predicting a 60 percent chance of good weather for the launch, which will kick off the sixth of 12 missions SpaceX is flying to the space station under a $1.6 billion resupply contract with NASA.