I had no idea... ???
http://www.foreignpolicy.com/articles/2010/04/20/peak_phosphorus
QuotePeak Phosphorus
It's an essential, if underappreciated component of our daily lives, and a key link in the global food chain. And it's running out.
BY JAMES ELSER, STUART WHITE | APRIL 20, 2010
From Kansas to China's Sichuan province, farmers treat their fields with phosphorus-rich fertilizer to increase the yield of their crops. What happens next, however, receives relatively little attention. Large amounts of this resource are lost from farm fields, through soil erosion and runoff, and down swirling toilets, through our urine and feces. Although seemingly mundane, this process cannot continue indefinitely. Our dwindling supply of phosphorus, a primary component underlying the growth of global agricultural production, threatens to disrupt food security across the planet during the coming century. This is the gravest natural resource shortage you've never heard of.
The root of this problem has previously been the subject of presidential concern. In a message to Congress in 1938, U.S. President Franklin D. Roosevelt warned that the phosphorus content of American agricultural land "has greatly diminished." This shortage, Roosevelt warned, could cause low crop yields and poor-quality produce, detrimentally affecting "the physical health and economic security of the people of the nation."
Phosphorus is used extensively for a variety of key functions in all living things, including the construction of DNA and cell membranes. As it is relatively rare in the Earth's crust, a lack of phosphorus is often the limiting factor in the growth of plants and algae. In humans, it plays an essential role in bone formation. Without a steady supply of this resource, global agricultural production will face a bottleneck, and humankind's growing population will suffer a serious nutrition shortage.
The world's reliance on phosphorus is an unappreciated aspect of the "Green Revolution," a series of agricultural innovations that made it possible to feed the approximately 4.2 billion-person increase in the global population since 1950. This massive expansion of global agricultural production required a simultaneous increase in the supply of key resources, including water and nitrogen. Without an increase in phosphorus, however, crops would still have lacked the resources necessary to fuel a substantial increase in production, and the Green Revolution would not have gotten off the ground.
Roosevelt's warning was prescient and stimulated agricultural engineers to find an effective, albeit temporary, solution. To satisfy the world's growing food demand, they mobilized global mining efforts in ancient, phosphorus-rich marine deposits. By 2008, industrial farmers were applying an annual 17 million metric tons of mined phosphorus on their fields. Demand is expanding at around 3 percent a year -- a rate that is likely to accelerate due to rising prosperity in the developing world (richer people consume more meat) and the burgeoning bioenergy sector, which also requires phosphorus to support crop-based biofuels.
Our supply of mined phosphorus is running out. Many mines used to meet this growing demand are degrading, as they are increasingly forced to access deeper layers and extract a lower quality of phosphate-bearing rock (phosphate is the chemical form in which nearly all phosphorus is found). Some initial analyses from scientists with the Global Phosphorus Research Initiative estimate that there will not be sufficient phosphorus supplies from mining to meet agricultural demand within 30 to 40 years. Although more research is clearly needed, this is not a comforting time scale.
The geographic concentration of phosphate mines also threatens to usher in an era of intense resource competition. Nearly 90 percent of the world's estimated phosphorus reserves are found in five countries: Morocco, China, South Africa, Jordan, and the United States. In comparison, the 12 countries that make up the OPEC cartel control only 75 percent of the world's oil reserves.
This fact could spark international tension and even influence how countries attempt to draw their internal boundaries. Many of Morocco's phosphate mines are in Western Sahara, a disputed independent territory that is occupied by Morocco and the site of growing international human rights concerns. Reflecting these concerns, U.N.-sanctioned export restrictions on phosphate and other resources are now in place, though the efficacy of the bans is incomplete. China, the country with the largest phosphorus reserves after Morocco, imposed a 135 percent tariff on the resource as part of 2008's complex series of events in which rising fuel and fertilizer costs led to rapid increases in food prices. The tariff effectively eliminated exports. Although the tariff was subsequently lifted as the 2008 food crisis faded, the imposition of this sort of trade barrier could become a regular occurrence as supplies dwindle worldwide.
The United States has only 12 phosphorus mines. The supplies from the most productive mine, in Florida, are declining rapidly -- it will be commercially depleted within 20 years. The United States exported phosphorus for decades but now imports about 10 percent of its supply, all from Morocco, with which it signed a free trade agreement in 2004.
The effects of this resource shortage will be felt long before the last phosphorus atom is extracted from the last mine. Increased demand for fertilizer and the decreased supply of phosphorus exports will result in higher prices, significantly affecting millions of farmers in the developing world who live on the brink of bankruptcy and starvation. Rising fertilizer prices could tip this balance.
Already, signs are emerging that our current practices cannot continue for long. Between 2003 and 2008, phosphate fertilizer prices rose approximately 350 percent. In 2008, rising food prices sparked riots in more than 40 countries. Although the spike in fertilizer prices was only partially responsible for the higher food prices, the riots illustrate the social upheaval caused by disruptions to the world's food supply. The 2008 food riots were only stopped by government promises of food subsidies -- a viable strategy only as long as governments can afford the ever-increasing costs of food support.
Establishing a reliable phosphorus supply is essential for assuring long-term, sustainable food security. We need to dramatically reduce the demand for phosphate rock by eliminating our wasteful practices. This will require a combination of low-tech and high-tech solutions, including efforts to prevent soil erosion, development of more-targeted methods of fertilizer application, and the creation of new, phosphorus-efficient crops, which produce a larger yield per phosphorus unit applied. Fortunately, unlike fossil fuels, phosphorus can be used over and over -- this is what occurs in natural ecosystems, where it is recycled innumerable times from its first mobilization from the Earth's crust to its eventual deposition into lake and ocean sediments.
If we fail to meet this challenge, humanity faces a Malthusian trap of widespread famine on a scale that we have not yet experienced. The geopolitical impacts of such disruptions will be severe, as an increasing number of states fail to provide their citizens with a sufficient food supply. This dark scenario need not, however, be our fate. If we are successful in rising to the phosphorus sustainability challenge, as well as other aspects of sustainable agriculture, we can look forward to a future in which families, communities, and countries are healthy and secure in their nutrition and where all live in a world with cleaner rivers, lakes, and oceans.
The old phosphate mines make pretty good bass fishing after they are retired.
Invest in Saskatchewan Potash and The Mosaic Company. Or short them... your call.
http://www.waterlink-international.com/news/id1000-Phosphorus_Shortage_Solved_Through_Sewage_Recovery.html
Thanks for the link... looks like people are working on solutions but this seems a more immediate and far reaching issue than anyone really knew.
http://www.dep.state.fl.us/geology/geologictopics/minerals.htm
Phosphate - Florida producers supplied approximately one-quarter of the world's phosphate needs and three-quarters of US domestic needs. Nearly all of the rock that is mined in Florida, 28.6 million metric tons in 2000, was used to manufacture fertilizer which, in turn, was used for agricultural purposes. What was not used in the manufacture of fertilizer was used in a number of products including feed supplements, vitamins, soft drinks, and toothpaste. In 2000, $1.13 billion dollars worth of fertilizer was exported from Florida making it another one of Florida's leading export commodities.
More...
http://www1.fipr.state.fl.us/PhosphatePrimer
QuoteIntroduction: Phosphate as an Essential Mineral
"The story of phosphorus is a long, fascinating one. But we are here interested primarily in knowing about its role in agriculture," wrote Vincent Sauchelli in a "Manual on Phosphates in Agriculture" published in 1942.
"Therefore in order to start at the beginning or our story we shall have to go back to the year 1840 - the year when Justus von Liebig, a German scientist, made an historical address before the British Association of Science in which he for the first time gave a clear, intelligent exposition of the role of minerals in plant growth and laid the ground work for modern agricultural science. He was the first to show that insoluble phosphates such as bone could be made to release their phosphorus in a form more quickly accessible to growing plants if they were caused to react with sulfuric acid. That suggestion stimulated John Bennett Lawes, an Englishman, to treat coprolites, a phosphorus bearing ore fairly abundant in Great Britain, with sulfuric acid and to test the resultant phosphate as a plant nutrient. In 1842 Lawes was given a patent on this idea, which permitted him to establish the first 'superphosphate' works. From then on is fertilizer history.
Within 20 years after Lawes got his patent the British were producing 150,000 tons a year of superphosphate. Then occurred the discovery of sources of mineral phosphates - rich deposits of rock phosphate in South Carolina in 1867 and in Florida in 1887. These discoveries gave American industry the opportunity to take the lead in the mining of rock phosphates and the production of superphosphate - a lead which has been maintained ever since."
In a message to the United States Congress in 1938, President Franklin D. Roosevelt underscored the importance of phosphate to agriculture and people.
"The phosphorus content of our land, following generations of cultivation, has greatly diminished," President Roosevelt said. "It needs replenishing. I cannot over-emphasize the importance of phosphorus not only to agriculture and soil conservation but also the physical health and economic security of the people of the nation. Many of our soil deposits are deficient in phosphorus, thus causing low yield and poor quality of crops and pastures…"
Why?
Phosphorus (P) is required by every living plant and animal cell. Deficiencies in available P in soils are a major cause of limited crop production. Phosphorus deficiency also is probably the most critical mineral deficiency in grazing livestock, according to "The Effect of Soils and Fertilizers on Human and Animal Nutrition," U. S. Department of Agriculture (USDA) Information Bulletin No. 378, issued in 1975. When P fertilizers are added to soils deficient in the available form of this element, increased crop and pasture yields ordinarily follow.
Phosphorus is one of the primary nutrients essential for plant growth and crop production. It is a non-renewable resource that must be mined from nature. It cannot be artificially produced. We do not, however, mine phosphorus. We mine phosphate minerals.
Phosphorus is highly reactive and is not found in its elemental form in nature. It occurs in nature as phosphate, which is a charged group of atoms, or an ion. It is made up of a phosphorus atom and four oxygen atoms (PO4) and carries three negative charges. The phosphate ion combines with various atoms and molecules within living organisms to form many different compounds essential to life.
Some examples of phosphate's role in living matter include:
Giving shape to DNA (deoxyribonucleic acid), which is a blueprint of genetic information contained in every living cell. A sugar-phosphate backbone forms the helical structure of every DNA molecule.
Playing a vital role in the way living matter provides energy for biochemical reactions in cells. The compound adenosine triphosphate (ATP) stores energy living matter gets from food (and sunlight in plants) and releases it when it is required for cellular activity. After the energy, in the form of a high-energy phosphate bond, is released the ATP becomes a lower-energy adenosine diphosphate (ADP) or a still lower-energy adenosine monophosphate (AMP) molecule. These will be replenished to the higher-energy ATP (or ADP) state with the addition of phosphate by various mechanisms in living cells.
The forming and strengthening of bones and teeth.
Humans get phosphate from the foods they eat. These examples show the amount of phosphorus* (mg/100 grams) in various foods.
Milk 93
Lean Beef 204
Potatoes 56
Broccoli 72
Wheat Flour 101
Cheddar Cheese 524
* NOTE: Although phosphorus is not found in elemental form in food, by convention the phosphate content of foods is expressed in terms of its phosphorus content.
Plants get phosphate from the soil along with nitrogen, potassium and a number of other nutrients they need to thrive. Fertilizer is added to nutrient-deficient soil to replenish these vital chemicals. Animals get phosphate from their food.
The bulk of the phosphate we mine - about 90% - is used to produce phosphate fertilizers. Another 5% is used to make animal feed supplements. The remaining 5% goes into making a variety of products from soft drinks to toothpaste to metal coatings.
Phosphate is a limited resource that cannot be replaced. As such, an international group of earth science and mineral resource agencies have designated it a strategic mineral resource. This group includes Australia, Canada, the Federal Republic of Germany, the Republic of South Africa and the United States of America.
"The International Strategic Minerals Inventory Summary Report - Phosphate" (USGS Circular 930-C) is a cooperative effort of this international group and published in 1984 by the U.S. Geological Survey. It describes Phosphorus as "an important component of the cell tissues of plants and animals; it is necessary for the structure, growth, and propagation of living organisms. Phosphorus enters the organic food chain from the soil through the roots of plants. The human body contains about 1 percent by weight phosphorus, most of it in the bones and teeth. The human body requires a daily intake of 0.6-0.7 g of phosphorus."